richard strohman
© Robert Holgren
Richard Strohman
Jeg vidste, at dette interview var vigtigt, gennem årene talte jeg altid om det; Nu kan jeg se, at Richard Strohman var George Orwell fra det stigende genomiske tyranni.
'Hvis vi tror, ​​at organismenes verden er en verden af ​​maskiner, vil vi begynde at behandle hinanden som maskiner. Det er den enorme fare ved hele denne mekanistiske model for organismer. Det er dette frygtelige mareridt, der går i opfyldelse. Min bekymring var bekymringen udtrykt af William Blake: 'Det, der synes at være, er for dem, for hvem det ser ud til at være det, og det er produktivt for de mest forfærdelige konsekvenser for dem, for hvem det ser ud til at være det.' " [Den sidste sætning er på engelsk: 'What seems to be is, to those to whom it seems to be and is productive of the most dreadful consequences to those to whom it seems to be.']
- Richard Strohman, PhD
For dem, der læste denne artikel, hvori jeg sidestillede Covid med Luciferian Biology - I kan huske, at jeg citerede et interview, som jeg ikke linkede til på det tidspunkt, med afdøde Dr. Richard Strohman. Nå, jeg fandt det. Når jeg læser det nu, er Strohmans ord og advarsler så meget mere levende, end jeg var i stand til at fatte på det tidspunkt, for over 20 år siden.

Det står stadig som et af de mest skattede interviews, jeg nogensinde har lavet.

Før denne samtale vidste jeg hvad, men ikke hvorfor. Jeg vidste, at tingene var meget bizarre og onde, men jeg forstod ikke, hvilken ideologisk dimension det hele opstod fra - begyndelsen. Jeg har post-facto udpenslet dette og tilføjet nogle links og opdateringer. Jeg håber, du vil tage dig tid til at læse Dr. Strohmans profetiske advarsler om teknokratisk genomik.

Incidentally, there are people out there laying claim on big fields of thought, who are PR savvy — too PR savvy to cite the giants who laid down the very paths making any of their ideas even possible. For this reason, I feel an urge to go into my forest of elder giants — all of them obscure — and let them speak. I've lived to see Kary Mullis [PCR inventor, HIV dissenter] and Peter Duesberg [formulator of aneuploidy cancer theory, father of HIV dissent] become household names, despite a 30 year global apparatus devoted to the immolation of their "credibility." I believe Richard Strohman should be next, along with the continued emphasis on better known scientific heroes such as Barbara McClintock and Lynn Margulis — whose works were so critical as opposition to genetic determinism, biological reductionism, and finally, soft genocide.

A brief note, like a firefly in my memory — true, but will you believe me?

In 1988, after I did my first interview with Peter Duesberg, he had me call Barbara McClintock. I was perhaps 22. I didn't know who she was, though I knew she was a Nobel recipient. All I remember is this: A very faint voice on the phone said, "Yes, Peter is right."

History requires excavation, time, patience, and in some cases, miracles.

I just discovered Richard Strohman had the same birthday as my father Barry — May 5 — so it's nice that it's Father's Day today.

Happy Father's Day, Fathers, be you fathers of your own children, other men's children, or for that matter, thought forms, animals, fields, anything at all that requires a sacrificial devotion to the protection of biological life. -CF
[Retrieved text written by Celia Farber, 2009, The Truth Barrier, bold faced portions of text mine, for emphasis.]

Richard Strohman, emeritus professor of molecular and cell biology at the University of California at Berkeley, died on July 4, 2009, at the age of 82.

I felt deeply grateful I had had the chance to interview him, on two occasions, in the last decade of his life. He was one of the most poignant elder scientific voices I ever came across, in what I have come to call the "lamenting" tradition of science, which contrasts with the revolutionary, zealous, lucrative.

Strohman, 2003, on the failure and danger of genetic determinism.

Strohman had been chair of the Zoology Department at UC Berkeley from 1973 to 1976, and Director of Berkeley's Health and Medical Sciences Program from 1976 to 1979. He studied "...cell and tissue growth regulation and cellular differentiation using molecular and cell approaches." He was one of the first signatories to the Group for the Scientific Reappraisal of the HIV-AIDS Hypothesis, and referred to the HIV/AIDS paradigm as "disastrous."

After his retirement from UC Berkeley, he traveled the world lecturing on the dangers of genetic determinism and biological reductionism.

In 2000, on assignment for TALK Magazine, I interviewed Professor Strohman for the first time. Strohman had been referred to me by Harvey Bialy, then the editor of Nature Bio/Technology, when I'd told Bialy I'd been saddled with a strange assignment, one that seemed to be demanding a positive, if not euphoric article about "gene therapy." I was called up by an editor there and told that Tina Brown wanted me to write an article about it for the magazine. I demurred, on grounds chances were slim to none I would deliver "good news" but the editor insisted.

To give you a sense of the hype at the time, read this info-page, from 1999:
"Imagine a world where a person could change his or her genetic structure and redirect the future course of evolution in their child and themselves. Through gene therapy this is a very real possibility. In the future it could be just as easy to change your physical or mental health as it is to get flu shot now. But the affects of gene therapy are long lasting and could affect your future offspring as well as your own health.

First discovered in the middle of the 1970's researchers were able to isolate certain genes from DNA. During the 1980's the term gene therapy came about and propelled research further.

The definition of gene therapy is a "technique where the genes causing a defect are themselves substituted by correct genes in the patient to cure a disease (Macer, 1990). "

Because of my HIV denialism (definition of the illness here) I wanted nothing to do with "Gene Therapy" even before I learned about Jesse Gelsinger.

Who was Jesse Gelsinger?

Jesse Gelsinger was 18 years old when he volunteered for a clinical trial at Penn State to test the effect on GT on a rare metabolic disorder called OTC Deficiency. Within hours of being infused with "corrective genes" encased in weakened adeno-virus, Jesse suffered multiple organ failure, and days later, his blood almost totally coagulated, swollen beyond recognition, and brain dead — he was taken off life support.

His death caused the then booming field of Gene Therapy to grind to a quiet screeching halt. When I went to Penn, as my first stop on the interview tour for the TALK article, the head of PR there said:
"Not sure what to tell you. We killed an 18 year old kid."
Let me emphasize:
Those words spoken by the head of PR for the medical center where the murder happened. I also interviewed Jesse's bereft father, Paul, in depth. It would be 20 years before I would learn that no, GT did not "grind to a screeching halt," as myth would have it. Rather, the scientist at the helm, who caused Jesse's death in his reckless zeal, was quietly, covertly funded by a $29.4 million grant from GlaxoSmithKline, to keep working on "gene therapy" — right after this happened — in 2000. You can read about the "redemption" of Dr. James Wilson and the story of the GSK, and other big money here.
By the way, when they kill people in their "trials" they have a very exacting phrase for it: "Lessons learned."

The troubling news about Gene Therapy might have become the new focus of my article for TALK — but no, they did not want that. After numerous re-writes, and linguistic attempts to somehow make this dead elephant fly, the piece was killed.

At the Rethinking AIDS Conference in Oakland, 2009, I met Richard Strohman's grandson, Josh Nicholson, and I told him I had this interview somewhere, and would find it, type it up, and publish it. I told him his grandfather was a great man.

I am indebted also to Harvey Bialy, for setting me right, when my editors were sending me into an abject abyss. Thank you again Harvey. [News has reached me that Harvey Bialy died in 2020, but nobody in my circles told me so I am unsure if this is true.]
© Unknown
Interview, Richard Strohman, PhD.

[Interview conducted in 2000; Previously published at the original Truth Barrier, 2009.]

Q: My understanding is that Gene Therapy, as a field, suffered a crisis after the death of Jesse Gelsinger, but it's gaining momentum again...

A: Yes. It's quick to wash out. Our memory of these things is so readily overcome by the next news hype about the newest gene and the newest potential cure. The world is full of potential cures that never happen.

Q: You lecture on the misinterpretations of genetic medicine, is that right?

A: My perspective on this is a little bit wider. It's my new career, looking at the limitations of genetic determinism, looking at the shortcomings of the science that I myself practiced for 30 years.

I did a lot of work in MS, which is a real genetic disease. My take on that is that there are genetic diseases. GT is in theory something to be looked at but at the same time we have to say that there isn't a single case of any genetic therapy that has ever worked successfully. Not one.

Q: But the other side claims success in France and so on

A: I don't know where the data is. In the newspapers? All those people at Penn were totally carried away by their own hype. There's always, in these medical centers, a resident bio-ethicist who is completely a spinner, what he's there for is to acknowledge the difficulties and then explain them away.

But these people assume that molecular genetics can actually do what is says it can do. They prepare us for what they think is inevitable. Then they grease the skids for all these things to go forward.

I was interviewed by Swedish TV about Gelsinger.

The broadcast criticism is that if you take a simple case, putting genes into plants, genetically engineered plants, where the testing can be done on large numbers without having to worry about ethics, what you see is: If you put the gene in with a viral vector and the vector is there because - and here we get back to our old friend Peter Duesberg - it's a strong promoter, the gene of choice will be expressed at levels it's never expressed in nature so... this faucet of gene expression that is always on for this protein that we're talking about now is itself a totally abnormal phenomenon. Another problem. In the lab you see that the gene is turned on [to make the] plant resistant to the pesticide. In that narrow analysis of success you see that the gene transferred was successful, its incorporated into the host genome, its stable, it can be inherited, third you see that the protein that the gene encodes for is present, it's expressed. The unnaturalness tends to disappear. The questions that are not asked are: What other side effects [are there] of this gene transfer? It's like going into a room full of people and inserting an opinion that they've never heard before and expecting it to go down without reverberations. In New York City, say. It never happens. And it never happens in these cells either.

Monsanto knows that this is true. All these corporate agricultural technologies know what's going on but they willfully - and here is the deep ethical problem that science has to deal with and [isn't] - it willfully chooses the narrowest boundaries for the evaluation of success. That's a criminal act. And I think the FDA buys it.

When you have to use these methods in the lab, and apply your criteria of success then take that same criteria of success and, apply it to the goods and services that come out of the lab and into thousands of acres of cropland or into young men in Philadelphia hospitals - those narrow criteria are overwhelmed by the realities of the real world. And that's the criminal act that's going on here and it's totally carried along by the chutzpah of these scientists and their ignorance of complex biology. That's the best you can say for them because a lot of them are aware of the measurements that could be made to check on all this but are too expensive to make.

These people don't want the FDA to approve any labeling of these things. We have a lot to learn from genetically altered foods that we can take over into the very rare events of genetic modifications in humans.

There's a whole raft of new biology of DNA that these people are not aware of. The liquidity and fluidity of the genome itself in this to the slightest environmental perturbation in the process of gene transfer changes everything.

It's the machine metaphor in biology. Biology is dominated by a mechanistic point of view. And it's one of the profound mistakes. Living things [laughs] are not machines. They may act like machines but they're not.

The science, which we need to attribute some good to, is totally capitulated to corporate interests, and how do we get out of this? It's really hard stuff.

Q: How can we trace this historically? Where does it start?

A: It all started when Barbara McClintock [in the 1940s and 1950s] showed that genes could be transferred horizontally between organisms, and even between species, but when the technology got better and better, it became clear that you could manipulate genes in the lab and transfer normal genes. We were part of this picture in MS, we had animal models and we could do very simple experiments in the lab and transfer normal genes into the cells with the mutation. That's what fed this hype that you could cure whole human beings or whole organisms, you could do very interesting things with individual cells, but that's in culture under limited conditions.

So, yeah there was a lot of excitement about all of that but it wasn't well thought through. We didn't know a lot that we knew five years later about the complexity of the genome and its ability to become destabilized when you did these things. You could get a positive effect from putting in a good gene but you weren't able to measure what the other side of that coin was. What was the response to the cell, what would it be like if it was in a whole body, interacting with this enormous computational array of possibility.

That's why the corporations don't want to look at it because it's so complex. The amount of money and effort that would have to be put into that denies the technology. You can't afford it; you have to take these shortcuts.

[These things are] transcalculational.

The whole idea of the ability of the simplest living organism to resist our scientific interpretation in any complete way I think is well accepted.

These are interactions that reach what's called a catastrophe of computation. The computer people say that there is no computer that could make the calculation and there never will be such a computer.

Q: But GT depends on that not being the case right?

A: Right, there are two things. First, you shouldn't expect that we could compute the organism from the genome, because the organism doesn't compute the organism from the genome.

The organism computes itself from a vast array of data including genetic data. The idea of the success of GT is that you put a single gene in there and that it will be expressed and that the insertion and the accommodation to the insertion will be normal in all other respects. That's an assumption. That's a huge assumption

Q: But that's what the whole thing is riding on.

A: That's what the whole thing is riding on! And they're avoiding all of the other [aspects.]

The only breakthrough I've seen, it was the last issue on the west coast last week's issue AAA, their committee on germ line therapy has issued a report in which they say it's too dangerous, should not be done with eggs and cells. Too many things that we do not know about and maybe cannot know.

The transfer of genes in such a way that they cannot be inherited.

Gene transfer should not be done in germ line cells, in eggs and sperm. This is the first time that the committee has given some signs of constraint to the corporate interests that they have to slow down. That the researchers must slow down

Q: Why was their alarm limited to gene line therapy?

A: That's a good question. I don't know.

If you understand what the assumption is that's being made — there is no proper scientific response to that. There is no way that they can say, "Don't worry about it, we'll fix it."

If you get them that far, you say: "You mean to say you really don't know what you're doing?"

They don't know what they're doing.

They got into this idea that what we need to know is that there are gene programs that are responsible for the more complex traits of human beings and other organisms, and that if we really could understand totally the human genome, if we could know what it was in some sort of a printout, then all of a sudden somehow in the picture itself we would get some kind of illumination. It was almost like some kind of a religious experience was expected here. Some epiphany would come once this picture was published. Ten years ago we were all yawning at that, or most of us were anyway, but not in the ranks, not in the training of young people, these molecular laboratories went right ahead with this whole notion of somehow everything would be understood and wait and see and don't sell science short this and what it's all about waiting and blah blah blah and that was it, and its still it, and these guys are out there with their big computers and they don't understand the limits the way physicists do. And the physicists seem to be remaining silent on all this, you've noticed. So the HGP [Human Genome Project] is now desperately looking for a way to explain what it's going to do with the data that it's got and it's an oncoming embarrassment that is almost at the level of the HIV/AIDS phenomenon. These people do not know how to go from the genome to the organism, period. They can't do anything and the reason they can't do anything is the reason that Tom Kuhn spelled out: If you've got a paradigm that's losing steam you can't turn it in for a new one until the new one is up and running. We don't have a new paradigm up and running and we're stuck with this and it's very hard to work your way out.

Given the power and money of the corporate interests, this thing is going to play itself out. It all comes together around the applications. The HGP [Human Gene Project] is funded — and it was funded from the very beginning — in order to cure human diseases and to provide the wherewithal to increase life expectancy.

Japanese are going to live to be 90 soon, genes aren't even mentioned.

This is another problem: Life expectancy has nothing to do with genetics.

The excitement came because there was a time fifteen years ago, in the ranks of biologists that clung to the view that there was something called "gene programs."

The only thing left open to them is this GT, using the fruits of the HGP and using molecular tools to feed this hype that's trying to become a major industry. It's servicing basic research.

They simply didn't anticipate this reality. Well, they did but...they decided to overlook their worries. There were other patients who showed signs of sensitivity. There were some warning lights flashing there. What killed Jesse Gelsinger was this insistence on the narrow focus of accounting in the lab.

They don't know what happened.

They don't know what happened!

There are lots of reports about all kinds of things that can happen when you put foreign DNA into a cell but they're all disregarded. There are papers showing the bizarre things that happen when you take cells in culture and put DNA into them and put them into an animal.

Q: What kinds of things?

A: Cells become sensitive, they exhibit a hypersensitivity response, any DNA sequence as small as 25 or so base pairs will generate really unpredictable reactions on the parts of the cells. The simple act of putting cells in culture in order to do this manipulation created genetic instabilities, which are inherited. This is seen very clearly in plant cells. The idea that you're not generating with the experiment is the huge amount of variability about which you know nothing is... you overlook that at great danger to everybody.

Q: An industry gets born out of some moment of eureka, surely?

A: Right.

Q: How can we explain why they thought this would work?

A: It's so simple, it's like the HIV thing, you just can't believe it.

They were doing all their experiments under controlled conditions in the lab which made them work, you could see the results. Everything changed in a way that was predictable. Of course what they didn't show you was the stuff that happened that wasn't predictable. But that's all data thrown in the ash can. And you continue to do the experiments in different ways until you find the way that gives you the answer you want.

Q: Then the gravy train got rolling?

A: Right. In days gone by, science might have worked this out but its been so captured by these relationships with corporate means and the rush to force things from the laboratory to the marketplace that created all this. So the [true] method of science is an old one.

We never had this incessant urging [in the past] to produce something useful — what that means is profitable. And under those circumstances everybody is caught up in it. Everybody is caught up in it, grants, millions of dollars flowing into laboratories, careers are made.

Q: Didn't the gene therapy hype come via AIDS via cancer?

A: Oh yeah, everything is due to genes, whether it's a human gene, normal gene, or a viral gene. All causality starts with the gene.

Q: And where did that belief come from?

A: That comes, my dear from, Gregor Mendel. A straight line and a straight simple line its absurdly, grotesquely simple. Going from Mendel to medical centers is the most absurd thing in the world.

Q: Why?

A: Because Mendel described very simple traits in plants.

This is what I published one year ago, the data is that there are these diseases in humans to which you can ascribe a single gene causality, and for which you can have some hope of doing something. But if you looked in the world almanac for the extent to which any one of these genetic diseases or all of these genetic diseases combined come into play in looking at life expectancy or mortality rates they aren't there. There are thousands of genetic diseases but they only amount to less than 2% of our disease load. Now you're taking that same logic which has been fruitless and you're going to apply it to the complex diseases, now we're talking about heart disease and cancer, and it's totally strange — it's weird and terrible science. Anybody who says it's not going to fly is a Luddite and anti-intellectual and anti-scientific.

They think they're doing science for science's sake. They think if their work leads us into the tunnel of obscurity then they're going to find their way out and they're going to find the light and so forth. The question is, what do we do in the real world while we're waiting for everybody to figure out where the light is? That's another ethical question that science doesn't have any answers for and we have to look at this from the point of view of giving science some guidelines and that's also resisted mightily. That's like a denial of a first amendment or something. I call it an invitation of the devil, this technology.
One of the most destructive phenomena in the history of the world.

Tape #2

Q: The paradigm that we're in now is called what?

A: The machine model of biology. That life is a machine and the elements of the machine are genes and proteins, and that we can reduce the machine to its parts. The idea that we can control life.

Q: And what paradigm did that replace?

A: That's an interesting question. There was never a monolithic paradigm other than evolution, which is coming under a lot of criticism these days. We're in a state of revolution now I think. Lilly Kay at MIT wrote a book about this a few years ago.

Went through the archives at...50, 60 years ago there was a pluralism in the life sciences, we could have an evolutionary paradigm, or a holistic paradigm... but the powers that be.. even before WW2 decided that the direction we were going to go in was going to be molecular biology and a deterministic pathway. That life was controlled by these structures that we could get a handle on and therefore we could control life in that way.

Whether they were Machiavellian enough to say 'well that's how we could all make a bundle' I do now know. But [in the past] there was a pluralism there in science, and many different directions, [that's gone.] Today, unless it's genetics, it ain't science in biology. That's what happened. It's reflected in the changing structure of the university. Fifty years ago we had organisms- we had zoology, botany. In most of the larger universities these departments have been phased out. I used to be the chairman of the zoology department; now its gone. I call it the intellectual urban renewal program, they tore down the neighborhoods and put up all these high rises and nobody talks to one another.

All these directions of research may still be there but they're still dancing to the same tune. The old metaphysical ideas, that life was only partially materialistic and that something called a vital force was required to fully explain life... It was obfuscatory in many ways, biology struggled to free itself from that for a long time when Mendel came along with inherited particles. In the early part of the 20th century we began to put Mendel's conceptual particles together with things called chromosomes and then genes, in a way which enabled that whole structure of biology to relay itself to the big cosmological question of evolution. That was the end of any kind of soft-headedness. A full-throttle shift into materialism and determinism.

Dick Rowan said in one of his NY Review Of Books pieces: "You have to understand that modern biology is materialistic. We have a prior commitment to materialism. And we're not going to let God get his foot back in the door."

In the name of not letting God get back in the door we're not facing reality. What you might think of as mystical is simply something that other people call complexity and complexity is scientific, it just doesn't coincide with this linear thinking that characterizes most of genetics.

Epigenesis is everything about the genome that is not the gene. It's an old word. The modern form of epigenesis is the scientific finding that is not talked about by these corporations... if you perturb a cell in culture, the genome will respond to that change in very specific ways, part of a cell's response to stimuli, many things will change in the way genes are expressed. Genes that were silent before you gave it a stimulus are now caused to express themselves in a pattern that is different from the one you had just been using. And not only that, genes will be marked by chemical pathways that we know about now but don't understand the pattern.

You change the organizational structures of the genes without changing the genes themselves, because that would be heretical - if you could change the genes other than by random mutation.

All these complicated changes [occur] in the genome exposure of the cell to any number of stimuli, certainly the intervention with foreign DNA. Genes make proteins, proteins interact with one another. They form networks and those networks take on a life of their own. They have a logic that isn't found in the genome. The come only in the real world of expression. Epigenetic phenomenon, the [immense] complexity is nowhere to be seen in this corporate thrust to cure everything by intervention.

Q: What do you worry about? What is the most dangerous scenario at the end of this road?

A: I worry that we're going to contaminate the entire planet with genetically modified plants. And that this will be irreversible. And we haven't even got the slightest idea what might happen here.

The chief CEO of Sun Microsystems Bill Joy had a big piece in Wired, in march of this year. Bill Joy is calling for a slowdown in technology. The co-founder of Sun Microsystems. You know what he's afraid of? He's afraid that what we're going to do... this is already part of this whole business of genetic manipulation of humans, embryos... Joy is afraid we're going to start making hybrids, between human beings and nanotechnology circuits made in place like Sun Microsystems, and that these hybrids will take over. This is the director, talking seriously. This is a serious guy. And we biologists...I'm worried that before we make the robots we will already have created the conditions that will demand the robots because there won't be anything called agriculture left anymore.

[Mentions a newsletter about technocratic eugenics.]

Q: Is it the potential loss of organic life on earth?

A: Yes.

Q: What worries you most when you think about so-called Gene Therapy?

A: My worry there was the worry expressed by William Blake:
'What seems to be is, to those to whom it seems to be and is productive of the most dreadful consequences to those to whom it seems to be.'
If we think that the world of organisms is a world of machines, we will begin to treat each other as machines. That is the huge danger of this whole mechanistic model of organisms. That's this terrible nightmare coming true.